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Abstract. Using a transfer matrix method we derive a series expansion for the percolation 
probability on the directed honeycomb lattice. The high-density series is obtained to order 
qI3. A Pad6 approximant analysis of the series has been used to estimate the percolation 
threshold qc and the critical exponent p. 

Since the percolation process was introduced by Broadbent and Hammersley (1957) 
and Domb (1959) it has been studied very intensely (Stauffer 1985). Percolation now 
forms an important branch of critical phenomena theory. 

Lattices in which directed bonds are independently present with probability p and 
absent with probability q = 1 - p  we shall refer to as directed lattices. Directed percola- 
tion can be associated with a great number of physical problems: Reggeon field theory 
(Grassberger and Sundermeyer 1978, Grassberger and de la Torre 1979, Cardy and 
Sugar 1980), three-dimensional random resistor-diode networks (Redner and Brown 
1981) and galactic evolution (Schulman and Seiden 1982). It can also be interpreted 
as a model for spreading under some influence or biased direction like epidemic models 
or a forest fire and it does not belong to the same universality class as the isotropic 
(undirected) case (Blease 1977a, b). 

As translational invariance is completely destroyed in the directed version the 
theory of conformal invariance cannot be applied (Essam et a1 1988) and it may be 
possible that their critical exponents are not simple rational fractions. Besides, some 
recent works have given very accurate estimates of the critical probabilities and a 
corresponding improvement in the conjectured values of the exponents (Essam et a1 
1988, Baxter and Guttmann 1988, Grassberger 1989). 

Series expansions for the moments of the pair connectedness (low-density) have 
now been performed on most of the usual lattices (Blease 1977b, Essam et a1 1988). 
However, in two dimensions, the corresponding series expansions for the percolation 
probability (high-density) are only available for the square and triangular lattices. In 
particular, for the honeycomb lattice the perimeter method cannot be applied (Blease 
1977a) and series expansions for the percolation probability has remained unknown 
for this lattice. Following Baxter and Guttmann (1988) we use a transfer matrix method 
which allows us to determine this series to order qI3. Below we present the method 
in a succinct form. 

Consider a honeycomb lattice drawn as in figure 1. Two sites are connected if one 
can walk along bonds linking these sites always in the allowed directions. For q less 
than a critical value qc and for an infinite system there is a non-zero probability P ( q )  
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Figure 1. The directed honeycomb lattice showing the variables U,, U,, uk whose interaction 
weight function is W (U,, U,, uk).  The rows are also indicated. 

that a given site V is connected to an infinite cluster. Now let PN(q) be the probability 
that the apex V is connected to at least one site in the row N. Then we expect that 

P ( q ) =  lim P N ( q ) .  
N+m 

Let us associate with each site j an Ising variable aj such that ai = +1 if j is 
connected to at least one site in the row N and aj=-l otherwise. If we define a 
function W (ai, aj, a k )  as being the probability that site i is in state air given that sites 
j ,  k are in states aj, ak (see figure 1) and a function f ( a l )  as corresponding to the 
probability that the apex V is in state a1 and finally, if we assign the value $1  to all 
sites in the last row then it follows that 

where the product is over all sites j that are above the bottom row and the sum is over 
all possible values *l excluded the topmost spin a1 : 

It is easy to show that 

P1(q) = 1 P2( q ) = 1 - q - q2 + q3 

P3(q)  = 1 - 

P4( 4) = 1 - 

-4q2+4q3 + 8q4- 12q5 + 8q7- 5 q s +  q9 

-4q2 - 12q3 +63q4 - 23q5 - 192q6+ 284q7 +40q8 -421q9+ 317q'O 

+ 112q" -3O5ql2+ 151q13+ 38qI4- 80q15+41q16- 10q17+ q". ( 6 )  

For large N we wrote a REDUCE (Hearn 1987) program and we were able to obtain 
Pl,(q). We found ourselves in a situation which resembles that of the directed square 
lattice (Baxter and Guttmann 1988): going from N to N + 1  leaves the coefficient 
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Table 1. Dlog Pad6 approximants to the percolation probability series for directed bond 
percolation on the honeycomb lattice. The entries give qC (left) and p (right) estimates. 

3 0.176 48 0.267 0.176 75 0.270 0.176 80 0.270 
4 0.176 85 0.271 0.177 16 0.276 0.177 01 0.273 
5 0.177 02 0.273 0.177 01 0.274 0.177 11 0.275 
6 0.177 11 0.275 0.177 09 0.274 

Table 2. Ratio method applied to the percolation probability series. Entries to the left 
(right) are 9Jp)  estimates. 

7 0.177 99 0.256 0.175 77 0.328 
8 0.177 04 0.287 0.177 51 0.269 
9 0.177 56 0.267 0.177 30 0.278 

10 0.176 78 0.301 0.177 17 0.282 
11 0.177 38 0.272 0.177 08 0.288 
12 0.176 90 0.298 0.177 14 0.283 
13 0.177 02 0.290 0.176 96 0.294 

Table 3. Pad6 approximants to the series generates by [ P ( q ) ] " @  giving the 9= estimates. 

4 0.177 23 0.177 21 0.177 19 
5 0.177 19 0.177 11 0.177 15 
6 0.177 15 0.177 16 0.177 15 
7 0.177 15 

of 1, q, . . . , q N - '  ( q N  for the square lattice) unchanged so that the percolation probabil- 
ity can be written 

and we obtain 

P ( q )  = 1 - q -4q'- 12q3-45q4- 188q5-835q6-3849q7- 18 242q8-88 265q9 

-434295q'O-2165 198q"-10915089q12-55 534781q13.. . . (8) 

For the square lattice Baxter and Guttmann have found a remarkable property 
involving some linear combinations of the Catalan numbers and the coefficients of the 
series expansion. They used this fact in order to extrapolate the series. Regrettably, 
we were unable to find any similar situation for the honeycomb lattice. 

We have used Dlog Pad6 approximants and the ratio method to obtain estimates 
of the critical probability qc and exponent p. The results of our analysis are shown 
in tables 1 and 2 and they favour the Pad6 method which exhibits faster convergence 
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(Dlog Pad6 approximants are usually well suited to study order parameter series). 
From these we have the estimates: p = 0.273 f 0.006 and qc = 0.1770 f 0.0005. Although 
completely consistent with universality, our values for the exponent p are poor when 
compared with earlier estimates (Baxter and Guttmann 1988, p = 0.2764* 0.0001) 
obtained from longer series expansions on the square lattice. 

If we accept the value p = 0.2764 then the estimate qc can be improved by writing 
Pad6 approximants to the series [ P (  q ) ] ” p  which now has a simple zero at q = qc.  The 
results are presented in table 3. Taking the confidence limits as the apparent scatter 
of qc we conclude that qc = 0.177 17 f 0.000 06 which is more precise than previous 
estimates (Blease 1977b) by one order of magnitude. 
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